Anxiolytic properties of green tea polyphenol (-)-epigallocatechin gallate (EGCG).
نویسندگان
چکیده
Naturally occurring polyphenols are potent antioxidants. Some of these compounds are also ligands for the GABA(A) receptor benzodiazepine site. This feature endows them with sedative properties. Here, the anxiolytic activity of the green tea polyphenol (-)-epigallocatechin gallate (EGCG) was investigated after acute administration in mice, using behavioral tests (elevated plus-maze and passive avoidance tests) and by electrophysiology on cultured hippocampal neurons. Patch-clamp experiments revealed that EGCG (1-10 muM) had no effect on GABA currents. However, EGCG reversed GABA(A) receptor negative modulator methyl beta-carboline-3-carboxylate (beta-CCM) inhibition on GABA currents in a concentration dependent manner. This was also observed at the level of synaptic GABA(A) receptors by recording spontaneous inhibitory synaptic transmission. In addition, EGCG consistently inhibited spontaneous excitatory synaptic transmission. Behavioral tests indicated that EGCG exerted both anxiolytic and amnesic effects just like the benzodiazepine drug, chlordiazepoxide. Indeed, EGCG in a dose-dependent manner both increased the time spent in open arms of the plus-maze and decreased the step-down latency in the passive avoidance test. GABA(A) negative modulator beta-CCM antagonized EGCG-induced amnesia. Finally, state-dependent learning was observable after chlordiazepoxide and EGCG administration using a modified passive avoidance procedure. Optimal retention was observed only when animals were trained and tested in the same state (veh-veh or drug-drug) and significant retrieval alteration was observed in different states (veh-drug or drug-veh). Moreover, EGCG and chlordiazepoxide fully generalized in substitution studies, indicating that they induced indistinguishable chemical states for the brain. Therefore, our data support that EGCG can induce anxiolytic activity which could result from an interaction with GABA(A) receptors.
منابع مشابه
Green Tea Polyphenol Epigallocatechin-3-Gallate Attenuates Behavioral Abnormality in Hemi-Parkinsonian Rat
Background: Epigallocatechin gallate (EGCG), a major constituent of green tea, has been introduced as a potent free radical scavenger and can effectively reduce free radical-induced lipid peroxidation. Since free radical injury plays an important role in neuronal damage in Parkinson’s disease (PD), this study examined whether EGCG administration would reduce functional asymmetry in an experimen...
متن کاملNew insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate☆
Green tea is rich in polyphenol flavonoids including catechins. Epigallocatechin 3-gallate (EGCG) is the most abundant and potent green tea catechin. EGCG has been extensively studied for its beneficial health effects as a nutriceutical agent. Based upon its chemical structure, EGCG is often classified as an antioxidant. However, treatment of cells with EGCG results in production of hydrogen pe...
متن کاملEpigallocatechin Gallate (EGCG) Is the Most Effective Cancer Chemopreventive Polyphenol in Green Tea
Green tea is a popular drink consumed daily by millions of people around the world. Previous studies have shown that some polyphenol compounds from green tea possess anticancer activities. However, systemic evaluation was limited. In this study, we determined the cancer chemopreventive potentials of 10 representative polyphenols (caffeic acid, CA; gallic acid, GA; catechin, C; epicatechin, EC; ...
متن کاملThe Galloyl Catechins Contributing to Main Antioxidant Capacity of Tea Made from Camellia sinensis in China
Total polyphenol content, catechins content, and antioxidant capacities of green, dark, oolong, and black teas made from Camellia sinensis in China were evaluated. The total polyphenol content of 20 samples of tea was in the range of 7.82-32.36%. Total catechins content was in the range of 4.34-24.27%. The antioxidant capacity of tea extract was determined by the oxygen radical absorbance capac...
متن کاملEpigallocatechin gallate inhibits biofilm formation by ocular staphylococcal isolates.
Epigallocatechin gallate (EGCg), the main polyphenol component of green tea, has several antibacterial properties. Here we show that sub-MICs of EGCg appear to decrease slime production, therefore inhibiting biofilm formation by ocular staphylococcal isolates previously characterized for the presence of ica genes by the Congo red agar plate assay and for adhesion to microtiter plates.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research
دوره 1110 1 شماره
صفحات -
تاریخ انتشار 2006